Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 76 - 100 of 100 results
76.

How Does Photoreceptor UVR8 Perceive a UV-B Signal?

UV UV receptors Review Background
Photochem Photobiol, 11 Jun 2015 DOI: 10.1111/php.12470 Link to full text
Abstract: UVR8 is the only known plant photoreceptor that mediates light responses to UV-B (280-315 nm) of the solar spectrum. UVR8 perceives a UV-B signal via light-induced dimer dissociation, which triggers a wide range of cellular responses involved in photomorphogenesis and photoprotection. Two recent crystal structures of Arabidopsis thaliana UVR8 (AtUVR8) have revealed unusual clustering of UV-B-absorbing Trp pigments at the dimer interface and provided a structural framework for further mechanistic investigation. This review summarizes recent advances in spectroscopic, computational and crystallographic studies on UVR8 that are directed toward full understanding of UV-B perception at the molecular level.
77.

Optical control of biological processes by light-switchable proteins.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Wiley Interdiscip Rev Dev Biol, 8 Apr 2015 DOI: 10.1002/wdev.188 Link to full text
Abstract: Cellular processes such as proliferation, differentiation, or migration depend on precise spatiotemporal coordination of protein activities. Correspondingly, reaching a quantitative understanding of cellular behavior requires experimental approaches that enable spatial and temporal modulation of protein activity. Recently, a variety of light-sensitive protein domains have been engineered as optogenetic actuators to spatiotemporally control protein activity. In the present review, we discuss the principle of these optical control methods and examples of their applications in modulating signaling pathways. By controlling protein activity with spatiotemporal specificity, tunable dynamics, and quantitative control, light-controllable proteins promise to accelerate our understanding of cellular and organismal biology.
78.

Two distinct domains of the UVR8 photoreceptor interact with COP1 to initiate UV-B signaling in Arabidopsis.

UV UV receptors Background
Plant Cell, 27 Jan 2015 DOI: 10.1105/tpc.114.133868 Link to full text
Abstract: UV-B photon reception by the Arabidopsis thaliana homodimeric UV RESISTANCE LOCUS8 (UVR8) photoreceptor leads to its monomerization and a crucial interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Relay of the subsequent signal regulates UV-B-induced photomorphogenesis and stress acclimation. Here, we report that two separate domains of UVR8 interact with COP1: the β-propeller domain of UVR8 mediates UV-B-dependent interaction with the WD40 repeats-based predicted β-propeller domain of COP1, whereas COP1 activity is regulated by interaction through the UVR8 C-terminal C27 domain. We show not only that the C27 domain is required for UVR8 activity but also that chemically induced expression of the C27 domain is sufficient to mimic UV-B signaling. We further show, in contrast with COP1, that the WD40 repeat proteins REPRESSOR OF UV-B PHOTOMORPHOGENESIS1 (RUP1) and RUP2 interact only with the UVR8 C27 domain. This coincides with their facilitation of UVR8 reversion to the ground state by redimerization and their potential to interact with UVR8 in a UV-B-independent manner. Collectively, our results provide insight into a key mechanism of photoreceptor-mediated signaling and its negative feedback regulation.
79.

Optogenetics for gene expression in mammalian cells.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Biol Chem, 10 Jan 2015 DOI: 10.1515/hsz-2014-0199 Link to full text
Abstract: Molecular switches that are controlled by chemicals have evolved as central research instruments in mammalian cell biology. However, these tools are limited in terms of their spatiotemporal resolution due to freely diffusing inducers. These limitations have recently been addressed by the development of optogenetic, genetically encoded, and light-responsive tools that can be controlled with the unprecedented spatiotemporal precision of light. In this article, we first provide a brief overview of currently available optogenetic tools that have been designed to control diverse cellular processes. Then, we focus on recent developments in light-controlled gene expression technologies and provide the reader with a guideline for choosing the most suitable gene expression system.
80.

Optogenetic control of intracellular signaling pathways.

blue red UV Cryptochromes Phytochromes UV receptors Review
Trends Biotechnol, 17 Dec 2014 DOI: 10.1016/j.tibtech.2014.11.007 Link to full text
Abstract: Cells employ a plethora of signaling pathways to make their life-and-death decisions. Extensive genetic, biochemical, and physiological studies have led to the accumulation of knowledge about signaling components and their interactions within signaling networks. These conventional approaches, although useful, lack the ability to control the spatial and temporal aspects of signaling processes. The recently emerged optogenetic tools open exciting opportunities by enabling signaling regulation with superior temporal and spatial resolution, easy delivery, rapid reversibility, fewer off-target side effects, and the ability to dissect complex signaling networks. Here we review recent achievements in using light to control intracellular signaling pathways and discuss future prospects for the field, including integration of new genetic approaches into optogenetics.
81.

Plant flavoprotein photoreceptors.

blue red UV Cryptochromes LOV domains Phytochromes UV receptors Review Background
Plant Cell Physiol, 15 Dec 2014 DOI: 10.1093/pcp/pcu196 Link to full text
Abstract: Plants depend on the surrounding light environment to direct their growth. Blue light (300-500 nm) in particular acts to promote a wide variety of photomorphogenic responses including seedling establishment, phototropism and circadian clock regulation. Several different classes of flavin-based photoreceptors have been identified that mediate the effects of blue light in the dicotyledonous genetic model Arabidopsis thaliana. These include the cryptochromes, the phototropins and members of the Zeitlupe family. In this review, we discuss recent advances, which contribute to our understanding of how these photosensory systems are activated by blue light and how they initiate signaling to regulate diverse aspects of plant development.
82.

Natural photoreceptors and their application to synthetic biology.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Biotechnol, 12 Nov 2014 DOI: 10.1016/j.tibtech.2014.10.007 Link to full text
Abstract: The ability to perturb living systems is essential to understand how cells sense, integrate, and exchange information, to comprehend how pathologic changes in these processes relate to disease, and to provide insights into therapeutic points of intervention. Several molecular technologies based on natural photoreceptor systems have been pioneered that allow distinct cellular signaling pathways to be modulated with light in a temporally and spatially precise manner. In this review, we describe and discuss the underlying design principles of natural photoreceptors that have emerged as fundamental for the rational design and implementation of synthetic light-controlled signaling systems. Furthermore, we examine the unique challenges that synthetic protein technologies face when applied to the study of neural dynamics at the cellular and network level.
83.

Orthogonal optogenetic triple-gene control in Mammalian cells.

blue red UV PhyB/PIF6 TULIP UVR8/COP1 VVD CHO-K1 Multichromatic
ACS Synth Biol, 28 Oct 2014 DOI: 10.1021/sb500305v Link to full text
Abstract: Optogenetic gene switches allow gene expression control at an unprecedented spatiotemporal resolution. Recently, light-responsive transgene expression systems that are activated by UV-B, blue, or red light have been developed. These systems perform well on their own, but their integration into genetic networks has been hampered by the overlapping absorbance spectra of the photoreceptors. We identified a lack of orthogonality between UV-B and blue light-controlled gene expression as the bottleneck and employed a model-based approach that identified the need for a blue light-responsive gene switch that is insensitive to low-intensity light. Based on this prediction, we developed a blue light-responsive and rapidly reversible expression system. Finally, we employed this expression system to demonstrate orthogonality between UV-B, blue, and red/far-red light-responsive gene switches in a single mammalian cell culture. We expect this approach to enable the spatiotemporal control of gene networks and to expand the applications of optogenetics in synthetic biology.
84.

Optogenetic approaches to cell migration and beyond.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Cell Biol, 15 Sep 2014 DOI: 10.1016/j.ceb.2014.08.004 Link to full text
Abstract: Optogenetics, the use of genetically encoded tools to control protein function with light, can generate localized changes in signaling within living cells and animals. For years it has been focused on channel proteins for neurobiology, but has recently expanded to cover many different types of proteins, using a broad array of different protein engineering approaches. These methods have largely been directed at proteins involved in motility, cytoskeletal regulation and gene expression. This review provides a survey of non-channel proteins that have been engineered for optogenetics. Existing molecules are used to illustrate the advantages and disadvantages of the many imaginative new approaches that the reader can use to create light-controlled proteins.
85.

Optogenetic control of signaling in mammalian cells.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Biotechnol J, 12 Sep 2014 DOI: 10.1002/biot.201400077 Link to full text
Abstract: Molecular signals are sensed by their respective receptors and information is transmitted and processed by a sophisticated intracellular network controlling various biological functions. Optogenetic tools allow the targeting of specific signaling nodes for a precise spatiotemporal control of downstream effects. These tools are based on photoreceptors such as phytochrome B (PhyB), cryptochrome 2, or light-oxygen-voltage-sensing domains that reversibly bind to specific interaction partners in a light-dependent manner. Fusions of a protein of interest to the photoreceptor or their interaction partners may enable the control of the protein function by light-mediated dimerization, a change of subcellular localization, or due to photocaging/-uncaging of effectors. In this review, we summarize the photoreceptors and the light-based mechanisms utilized for the modulation of signaling events in mammalian cells focusing on non-neuronal applications. We discuss in detail optogenetic tools and approaches applied to control signaling events mediated by second messengers, Rho GTPases and growth factor-triggered signaling cascades namely the RAS/RAF and phosphatidylinositol-3-kinase pathways. Applying the latest generation of optogenetic tools allows to control cell fate decisions such as proliferation and differentiation or to deliver therapeutic substances in a spatiotemporally controlled manner.
86.

Tools for controlling protein interactions using light.

blue UV Cryptochromes UV receptors Review
Curr Protoc Cell Biol, 2 Sep 2014 DOI: 10.1002/0471143030.cb1716s64 Link to full text
Abstract: Genetically encoded actuators that allow control of protein-protein interactions using light, termed 'optical dimerizers', are emerging as new tools for experimental biology. In recent years, numerous new and versatile dimerizer systems have been developed. Here we discuss the design of optical dimerizer experiments, including choice of a dimerizer system, photoexcitation sources, and the coordinate use of imaging reporters. We provide detailed protocols for experiments using two dimerization systems we previously developed, CRY2/CIB and UVR8/UVR8, for use in controlling transcription, protein localization, and protein secretion using light. Additionally, we provide instructions and software for constructing a pulse-controlled LED device for use in experiments requiring extended light treatments.
87.

How to control proteins with light in living systems.

blue red UV BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
Nat Chem Biol, 17 Jun 2014 DOI: 10.1038/nchembio.1534 Link to full text
Abstract: The possibility offered by photocontrolling the activity of biomolecules in vivo while recording physiological parameters is opening up new opportunities for the study of physiological processes at the single-cell level in a living organism. For the last decade, such tools have been mainly used in neuroscience, and their application in freely moving animals has revolutionized this field. New photochemical approaches enable the control of various cellular processes by manipulating a wide range of protein functions in a noninvasive way and with unprecedented spatiotemporal resolution. We are at a pivotal moment where biologists can adapt these cutting-edge technologies to their system of study. This user-oriented review presents the state of the art and highlights technical issues to be resolved in the near future for wide and easy use of these powerful approaches.
88.

The UV-B photoreceptor UVR8: from structure to physiology.

UV UV receptors Review Background
Plant Cell, 30 Jan 2014 DOI: 10.1105/tpc.113.119446 Link to full text
Abstract: Low doses of UV-B light (280 to 315 nm) elicit photomorphogenic responses in plants that modify biochemical composition, photosynthetic competence, morphogenesis, and defense. UV RESISTANCE LOCUS8 (UVR8) mediates photomorphogenic responses to UV-B by regulating transcription of a set of target genes. UVR8 differs from other known photoreceptors in that it uses specific Trp amino acids instead of a prosthetic chromophore for light absorption during UV-B photoreception. Absorption of UV-B dissociates the UVR8 dimer into monomers, initiating signal transduction through interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1. However, much remains to be learned about the physiological role of UVR8 and its interaction with other signaling pathways, the molecular mechanism of UVR8 photoreception, how the UVR8 protein initiates signaling, how it is regulated, and how UVR8 regulates transcription of its target genes.
89.

Optobiology: optical control of biological processes via protein engineering.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Biochem Soc Trans, 23 Sep 2013 DOI: 10.1042/bst20130150 Link to full text
Abstract: Enabling optical control over biological processes is a defining goal of the new field of optogenetics. Control of membrane voltage by natural rhodopsin family ion channels has found widespread acceptance in neuroscience, due to the fact that these natural proteins control membrane voltage without further engineering. In contrast, optical control of intracellular biological processes has been a fragmented effort, with various laboratories engineering light-responsive properties into proteins in different manners. In the present article, we review the various systems that have been developed for controlling protein functions with light based on vertebrate rhodopsins, plant photoregulatory proteins and, most recently, the photoswitchable fluorescent protein Dronpa. By allowing biology to be controlled with spatiotemporal specificity and tunable dynamics, light-controllable proteins will find applications in the understanding of cellular and organismal biology and in synthetic biology.
90.

The UVR8 UV-B Photoreceptor: Perception, Signaling and Response.

UV UV receptors Review Background
Arabidopsis Book, 11 Jun 2013 DOI: 10.1199/tab.0164 Link to full text
Abstract: Ultraviolet-B radiation (UV-B) is an intrinsic part of sunlight that is accompanied by significant biological effects. Plants are able to perceive UV-B using the UV-B photoreceptor UVR8 which is linked to a specific molecular signaling pathway and leads to UV-B acclimation. Herein we review the biological process in plants from initial UV-B perception and signal transduction through to the known UV-B responses that promote survival in sunlight. The UVR8 UV-B photoreceptor exists as a homodimer that instantly monomerises upon UV-B absorption via specific intrinsic tryptophans which act as UV-B chromophores. The UVR8 monomer interacts with COP1, an E3 ubiquitin ligase, initiating a molecular signaling pathway that leads to gene expression changes. This signaling output leads to UVR8-dependent responses including UV-B-induced photomorphogenesis and the accumulation of UV-B-absorbing flavonols. Negative feedback regulation of the pathway is provided by the WD40-repeat proteins RUP1 and RUP2, which facilitate UVR8 redimerization, disrupting the UVR8-COP1 interaction. Despite rapid advancements in the field of recent years, further components of UVR8 UV-B signaling are constantly emerging, and the precise interplay of these and the established players UVR8, COP1, RUP1, RUP2 and HY5 needs to be defined. UVR8 UV-B signaling represents our further understanding of how plants are able to sense their light environment and adjust their growth accordingly.
91.

A light-triggered protein secretion system.

UV UVR8/UVR8 Cos-7 HEK293T rat hippocampal neurons Control of vesicular transport
J Cell Biol, 13 May 2013 DOI: 10.1083/jcb.201210119 Link to full text
Abstract: Optical control of protein interactions has emerged as a powerful experimental paradigm for manipulating and studying various cellular processes. Tools are now available for controlling a number of cellular functions, but some fundamental processes, such as protein secretion, have been difficult to engineer using current optical tools. Here we use UVR8, a plant photoreceptor protein that forms photolabile homodimers, to engineer the first light-triggered protein secretion system. UVR8 fusion proteins were conditionally sequestered in the endoplasmic reticulum, and a brief pulse of light triggered robust forward trafficking through the secretory pathway to the plasma membrane. UVR8 was not responsive to excitation light used to image cyan, green, or red fluorescent protein variants, allowing multicolor visualization of cellular markers and secreted protein cargo as it traverses the cellular secretory pathway. We implemented this novel tool in neurons to demonstrate restricted, local trafficking of secretory cargo near dendritic branch points.
92.

Biomedically relevant circuit-design strategies in mammalian synthetic biology.

blue red UV Cryptochromes LOV domains Phytochromes UV receptors Review
Mol Syst Biol, 30 Apr 2013 DOI: 10.1038/msb.2013.48 Link to full text
Abstract: The development and progress in synthetic biology has been remarkable. Although still in its infancy, synthetic biology has achieved much during the past decade. Improvements in genetic circuit design have increased the potential for clinical applicability of synthetic biology research. What began as simple transcriptional gene switches has rapidly developed into a variety of complex regulatory circuits based on the transcriptional, translational and post-translational regulation. Instead of compounds with potential pharmacologic side effects, the inducer molecules now used are metabolites of the human body and even members of native cell signaling pathways. In this review, we address recent progress in mammalian synthetic biology circuit design and focus on how novel designs push synthetic biology toward clinical implementation. Groundbreaking research on the implementation of optogenetics and intercellular communications is addressed, as particularly optogenetics provides unprecedented opportunities for clinical application. Along with an increase in synthetic network complexity, multicellular systems are now being used to provide a platform for next-generation circuit design.
93.

Multi-chromatic control of mammalian gene expression and signaling.

blue red UV PhyB/PIF6 UVR8/COP1 VVD CHO-K1 Cos-7 HEK293T MEF-1 NIH/3T3 SNB-19 Transgene expression Control of cell-cell / cell-material interactions Multichromatic
Nucleic Acids Res, 26 Apr 2013 DOI: 10.1093/nar/gkt340 Link to full text
Abstract: The emergence and future of mammalian synthetic biology depends on technologies for orchestrating and custom tailoring complementary gene expression and signaling processes in a predictable manner. Here, we demonstrate for the first time multi-chromatic expression control in mammalian cells by differentially inducing up to three genes in a single cell culture in response to light of different wavelengths. To this end, we developed an ultraviolet B (UVB)-inducible expression system by designing a UVB-responsive split transcription factor based on the Arabidopsis thaliana UVB receptor UVR8 and the WD40 domain of COP1. The system allowed high (up to 800-fold) UVB-induced gene expression in human, monkey, hamster and mouse cells. Based on a quantitative model, we determined critical system parameters. By combining this UVB-responsive system with blue and red light-inducible gene control technology, we demonstrate multi-chromatic multi-gene control by differentially expressing three genes in a single cell culture in mammalian cells, and we apply this system for the multi-chromatic control of angiogenic signaling processes. This portfolio of optogenetic tools enables the design and implementation of synthetic biological networks showing unmatched spatiotemporal precision for future research and biomedical applications.
94.

Ultraviolet-B-mediated induction of protein-protein interactions in mammalian cells.

UV UVR8/COP1 S. cerevisiae U-2 OS
Nat Commun, 2013 DOI: 10.1038/ncomms2800 Link to full text
Abstract: Light-sensitive proteins are useful tools to control protein localization, activation and gene expression, but are currently limited to excitation with red or blue light. Here we report a novel optogenetic system based on the ultraviolet-B-dependent interaction of the Arabidopsis ultraviolet-B photoreceptor UVR8 with COP1 that can be performed in visible light background. We use this system to induce nuclear accumulation of cytoplasmic green fluorescent protein fused to UVR8 in cells expressing nuclear COP1, and to recruit a nucleoplasmic red fluorescent protein fused to COP1 to chromatin in cells expressing UVR8-H2B. We also show that ultraviolet-B-dependent interactions between DNA-binding and transcription activation domains result in a linear induction of gene expression. The UVR8-COP1 interactions in mammalian cells can be induced using subsecond pulses of ultraviolet-B light and last several hours. As UVR8 photoperception is based on intrinsic tryptophan residues, these interactions do not depend on the addition of an exogenous chromophore.
95.

Photoinduced damage to cellular DNA: direct and photosensitized reactions.

UV UV receptors Review Background
Photochem Photobiol, 30 Aug 2012 DOI: 10.1111/j.1751-1097.2012.01200.x Link to full text
Abstract: The survey focuses on recent aspects of photochemical reactions to cellular DNA that are implicated through the predominant formation of mostly bipyrimidine photoproducts in deleterious effects of human exposure to sunlight. Recent developments in analytical methods have allowed accurate and quantitative measurements of the main DNA photoproducts in cells and human skin. Highly mutagenic CC and CT bipyrimidine photoproducts, including cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) are generated in low yields with respect to TT and TC photoproducts. Another striking finding deals with the formation of Dewar valence isomers, the third class of bipyrimidine photoproducts that is accounted for by UVA-mediated isomerization of initially UVB generated 6-4PPs. Cyclobutadithymine (T<>T) has been unambiguously shown to be involved in the genotoxicity of UVA radiation. Thus, T<>T is formed in UVA-irradiated cellular DNA according to a direct excitation mechanism with a higher efficiency than oxidatively generated DNA damage that arises mostly through the Type II photosensitization mechanism. C<>C and C<>T are repaired at rates intermediate between those of T<>T and 6-4TT. Evidence has been also provided for the occurrence of photosensitized reactions mediated by exogenous agents that act either in an independent way or through photodynamic effects.
96.

Structural basis of ultraviolet-B perception by UVR8.

UV UV receptors Background
Nature, 29 Feb 2012 DOI: 10.1038/nature10931 Link to full text
Abstract: The Arabidopsis thaliana protein UVR8 is a photoreceptor for ultraviolet-B. Upon ultraviolet-B irradiation, UVR8 undergoes an immediate switch from homodimer to monomer, which triggers a signalling pathway for ultraviolet protection. The mechanism by which UVR8 senses ultraviolet-B remains largely unknown. Here we report the crystal structure of UVR8 at 1.8 Å resolution, revealing a symmetric homodimer of seven-bladed β-propeller that is devoid of any external cofactor as the chromophore. Arginine residues that stabilize the homodimeric interface, principally Arg 286 and Arg 338, make elaborate intramolecular cation-π interactions with surrounding tryptophan amino acids. Two of these tryptophans, Trp 285 and Trp 233, collectively serve as the ultraviolet-B chromophore. Our structural and biochemical analyses identify the molecular mechanism for UVR8-mediated ultraviolet-B perception, in which ultraviolet-B radiation results in destabilization of the intramolecular cation-π interactions, causing disruption of the critical intermolecular hydrogen bonds mediated by Arg 286 and Arg 338 and subsequent dissociation of the UVR8 homodimer.
97.

Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges.

UV UV receptors Background
Science, 9 Feb 2012 DOI: 10.1126/science.1218091 Link to full text
Abstract: The recently identified plant photoreceptor UVR8 (UV RESISTANCE LOCUS 8) triggers regulatory changes in gene expression in response to ultraviolet-B (UV-B) light through an unknown mechanism. Here, crystallographic and solution structures of the UVR8 homodimer, together with mutagenesis and far-UV circular dichroism spectroscopy, reveal its mechanisms for UV-B perception and signal transduction. β-propeller subunits form a remarkable, tryptophan-dominated, dimer interface stitched together by a complex salt-bridge network. Salt-bridging arginines flank the excitonically coupled cross-dimer tryptophan "pyramid" responsible for UV-B sensing. Photoreception reversibly disrupts salt bridges, triggering dimer dissociation and signal initiation. Mutation of a single tryptophan to phenylalanine retunes the photoreceptor to detect UV-C wavelengths. Our analyses establish how UVR8 functions as a photoreceptor without a prosthetic chromophore to promote plant development and survival in sunlight.
98.

Computational evidence for the role of Arabidopsis thaliana UVR8 as UV-B photoreceptor and identification of its chromophore amino acids.

UV UV receptors Background
J Chem Inf Model, 24 May 2011 DOI: 10.1021/ci200017f Link to full text
Abstract: A homology model of the Arabidopsis thaliana UV resistance locus 8 (UVR8) protein is presented herein, showing a seven-bladed β-propeller conformation similar to the globular structure of RCC1. The UVR8 amino acid sequence contains a very high amount of conserved tryptophans, and the homology model shows that seven of these tryptophans cluster at the 'top surface' of the UVR8 protein where they are intermixed with positive residues (mainly arginines) and a couple of tyrosines. Quantum chemical calculations of excitation spectra of both a large cluster model involving all twelve above-mentioned residues and smaller fragments thereof reveal that absorption maxima appearing in the 280-300 nm range for the full cluster result from interactions between the central tryptophans and surrounding arginines. This observation coincides with the published experimentally measured action spectrum for the UVR8-dependent UV-B stimulation of HY5 transcription in mature A. thaliana leaf tissue. In total these findings suggest that UVR8 has in fact in itself the ability to be an ultraviolet-B photoreceptor in plants.
99.

Perception of UV-B by the Arabidopsis UVR8 protein.

UV UV receptors Background
Science, 1 Apr 2011 DOI: 10.1126/science.1200660 Link to full text
Abstract: To optimize their growth and survival, plants perceive and respond to ultraviolet-B (UV-B) radiation. However, neither the molecular identity of the UV-B photoreceptor nor the photoperception mechanism is known. Here we show that dimers of the UVR8 protein perceive UV-B, probably by a tryptophan-based mechanism. Absorption of UV-B induces instant monomerization of the photoreceptor and interaction with COP1, the central regulator of light signaling. Thereby this signaling cascade controlled by UVR8 mediates UV-B photomorphogenic responses securing plant acclimation and thus promotes survival in sunlight.
100.

Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis.

UV UV receptors Background
EMBO J, 22 Jan 2009 DOI: 10.1038/emboj.2009.4 Link to full text
Abstract: The ultraviolet-B (UV-B) portion of the solar radiation functions as an environmental signal for which plants have evolved specific and sensitive UV-B perception systems. The UV-B-specific UV RESPONSE LOCUS 8 (UVR8) and the multifunctional E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) are key regulators of the UV-B response. We show here that uvr8-null mutants are deficient in UV-B-induced photomorphogenesis and hypersensitive to UV-B stress, whereas overexpression of UVR8 results in enhanced UV-B photomorphogenesis, acclimation and tolerance to UV-B stress. By using sun simulators, we provide evidence at the physiological level that UV-B acclimation mediated by the UV-B-specific photoregulatory pathway is indeed required for survival in sunlight. At the molecular level, we demonstrate that the wild type but not the mutant UVR8 and COP1 proteins directly interact in a UV-B-dependent, rapid manner in planta. These data collectively suggest that UV-B-specific interaction of COP1 and UVR8 in the nucleus is a very early step in signalling and responsible for the plant's coordinated response to UV-B ensuring UV-B acclimation and protection in the natural environment.
Submit a new publication to our database